
Black and white image morphology

In this section, we present the basic definitions and operations of morphology with a black and white
(i.e. binary) image. Let E be the Euclidean space Z2. I.e. it is the space of all pairs of integer numbers.
Let B be the set of points from E, e.g.: B=(-1,0), (0,-1), (0,0), (0,1 ), (1,0). Then translating the set
B by the vector z we call the set Bz for which:

Bz = {b+ z|b ∈ B},∀z ∈ E

By mirroring the set B we denote the set B̂, while the following applies:

B̂ = {x ∈ E| − x ∈ B}

Let A be a black and white image - a set of points A in the space E to which we assign a rectangular
border. By structural element we will understand such a set B to which we assign center at the
point 0, 0. Then by erosion of the image A using the structural element B we call the set:

A⊖B = {z ∈ E|Bz ⊆ A}}

I.e. is the set of points where the center of B goes when the set B moves within the set A. By dilating
the image A using the structural element B, we call the set:

A⊕B = {z ∈ E|{B̂z ∩A ̸= ∅}}

T.. is the set of points where the center of B reaches when the set B moves so that it still overlaps at
least partially with A.

Opening the image A using the structural element B is the set:

A ◦B = (A⊖B)⊕B

I.e. it is the set of points covered by B points when the set B moves within the set A..
Closing the image A using the structural element B is the set:

A •B = (A⊕B)⊖B

I.e. it is the set of points not covered by B points when the set B moves so that it does not overlap with
A.

Erosion and dilation as well as opening and closing are complementary operations. Let C denote the
complementary set. Then applies:

(A⊖B)C = AC ⊕ B̂

(A⊕B)C = AC ⊖ B̂

(A ◦B)C = AC • B̂

(A •B)C = AC ◦ B̂

In the MATLAB environment, they are implemented using the functions imerode, imdilate,
imopen, imclose.. The structural element is created using the strel function and is a rectangular
area. The complementary image can be obtained using the imcomplement function. More information
can be found in [1]. Examples of the mentioned basic morphological operations for a black and white
image are shown in Fig. 1.

1



Fig. 1 Examples of basic morphological operations for a black and white images: erosion, dilation,
opening, closing . For clarity, the original image, the structural element and the result of the

morphological operations are color-differentiated using the red and blue color channels, and blending
using the alpha channel is used.

Basic morphological operators allow to detect object boundaries using the operation:

A−A⊖B

I.e. we subtract the eroded image from the original image, so we are left with an edge. Examples of use
are shown in Fig. 2

A more advanced morphological operation used in shape recognition is the hit or miss transfor-
mation (HMT). This operation works with two structural elements B1, B2. The result is the set:

A⊛B1,2 = (A⊖B1) ∩ (AC ⊖B2)

This operation allows to interpret points absent in the image and structural element as background.
If we choose B2 = BC

1 , i.e. B2 represents the background and interpret A with AC as foreground and
background, then the HMT results are the positions of the center of the structural element B1 where its
foreground is in the foreground A and at the same time its background is in the background A. In the
MATLAB environment, the HMT is available using the bwhitmiss function. An example of HMT is
shown in Fig. 3. HMT allows us to define, in addition to the foreground and background, which points
we do not care about. These are the ones that do not appear in either B1 or B2. An example of the use
of such structural elements is Fig. 4.

Morphological reconstruction is an iterative method for area reconstruction, which uses 2 images
and a structural element. The first image (marker - F ) determines the starting point (points), the
second determines the target area (mask - G). The structural element B determines the connectivity.
The reconstruction is denoted by RF

G and is calculated as follows:

1. Initialize h1 = F

2. Repeat hk+1 = (hk ⊕B) ∩G until hk+1 = hk

3. The output is RF
G = hk

2



If there are several objects in the image, they can be separated using morphological reconstruction
(each marker identifies a different object). Alternatively, empty bounded areas can be filled with this
algorithm (if A is an area, then we choose AC as a mask). In the MATLAB environment, reconstruction
is available using the imreconstruct function. Examples of both uses are in Fig. 5 and 6. Morphological
reconstruction is also used by the function imfill.

When processing the image, it can be useful to get a skeleton of the specified area. The skeleton is
a set of connected points that are equidistant from the edge of the area. Morphologically, this set can
be obtained by repeated thinning of the area, e.g. using erosion, while preserving endpoints and line
connectivity (we also talk about topologically preserving thinning). In the MATLAB environment, this
operation is available using the bwmorph function, while ”thin” or ”skel” (algorithm described in [4])
is selected as the operation. ”glass” (uses algorithm [4]). Operations give a slightly different result. An
example is shown in Fig. 7.

Fig. 2 An example of object boundary detection using morphological operations for a black and white
image. For clarity, the original image, the structural element and the result of the morphological

operation are color-differentiated using the red and blue color channels, and blending using the alpha
channel is used.

Fig. 3 Example of detecting holes in an object using HMT.

3



Fig. 4 Example of detecting the right edge of an object using HMT..

Fig. 5 Example of morphological reconstruction of part of the object based on the initial markup.

Fig. 6 Example of morphological reconstruction used to fill the object.

Fig. 7 An example of creating a skeleton of an area using morphology in the MATLAB environment.

More information about morphological operations can be found in [2] [3].

4



References

[1] Mathworks, Morphological Operations, online: https://www.mathworks.com/help/images/morphological-filtering.
html

[2] Gonzalez, R., C., Woods, E., W., Digital Image Processing, Global Edition, 4th edition, Pearson
2018, ISBN 10: 1-292-22304-9

[3] Gonzalez, R., C., Woods, E., W., Eddings, S., L., Digital Image Processing using MATLAB, Gates-
mark Publishing, ISBN-10: 0-9820854-1-9

[4] Haralick, Robert M., and Linda G. Shapiro. Computer and Robot Vision, Volume I. Addison-
Wesley, 1992.

Appendix

The source code of the program that created Fig. 1

%https://en.wikipedia.org/wiki/Alpha compositing
% RGBA images have 4 layers, the 4th is alpha channel:
% alpha value of 0 means that the pixel is fully transparent
% alpha value of 1 means that the pixel is fully opaque.
clear all; close all; clc;
fig=figure;
%create some demo images
A=zeros(32,32);
A(6:21,6:21)=ones(16);
A(12:27,12:27)=ones(16);
A(12:15,12:15)=zeros(4);
SE=strel("diamond",4);
subplot(2,3,1)
showBlue(A, "Original");
subplot(2,3,4)
showRed(double(SE.Neighborhood), "Structuring element");
subplot(2,3,2)
B=imdilate(A,SE);
showCombined(A,B,"Dilation");
subplot(2,3,3)
B=imerode(A,SE);
showCombined(A,B,"Erosion");
subplot(2,3,5)
B=imopen(A,SE);
showCombined(A,B,"Opening");
subplot(2,3,6)
B=imclose(A,SE);
showCombined(A,B,"Closing");
fig.PaperUnits = 'inches';
fig.PaperPosition = [0 0 15 10];
print(fig,"morphBinBasicsOps.png",'−dpng');

function showCombined(myA, myB,myTitle)
%display A over B using transparency
mySize=size(myA,1);
zero=zeros(mySize);
myImgaAlpha=0.2;
myImgaRGBA=cat(3,zero,zero,myA,myImgaAlpha*myA);
myImgbAlpha=0.2;
myImgbRGBA=cat(3,myB,zero,zero,myImgbAlpha*myB);
myC=myAoverB(myImgaRGBA, myImgbRGBA);
imAshow(myC,myTitle);

end

function showBlue(myA,myTitle)
mySize=size(myA,1);
zero=zeros(mySize);
myImgaAlpha=0.2;
myImgaRGBA=cat(3,zero,zero,myA,myImgaAlpha*myA);
imAshow(myImgaRGBA,myTitle);

5

https://www.mathworks.com/help/images/morphological-filtering.html
https://www.mathworks.com/help/images/morphological-filtering.html


end

function showRed(myA,myTitle)
mySize=size(myA,1);
zero=zeros(mySize);
myImgaAlpha=0.2;
myImgaRGBA=cat(3,myA,zero,zero,myImgaAlpha*myA);
imAshow(myImgaRGBA,myTitle);

end

% display the RGBA image
% as background we use nontransparent white image
function imAshow(myRGBA, myTitle)

mySize=size(myRGBA,1);
one=ones(mySize);
myWhite=cat(3,one,one,one,one);
myOut=myAoverB(myRGBA,myWhite);
if 0

imshow(myOut(:,:,1:3));
else

%better traceable values
myOut=uint8(myOut*255);
imshow(myOut(:,:,1:3),[0,255],'InitialMagnification',"fit");

end
title(myTitle)
pixelgrid

end

%compute A over B for two RGBA images
function vOutImg=myAoverB(imgA, imgB)

imgA RGB=imgA(:,:,1:3);
imgA alpha=imgA(:,:,4);
imgB RGB=imgB(:,:,1:3);
imgB alpha=imgB(:,:,4);

alpha O=imgA alpha+imgB alpha.*(1−imgA alpha);
vOutImgRGB=(imgA RGB.*imgA alpha+imgB RGB.*imgB alpha.*(1−imgA alpha))./alpha O;
vOutImgRGB(isnan(vOutImgRGB))=0;
vOutImg=cat(3,vOutImgRGB,alpha O);

end

Key part of the program that created Fig. 3

...
A= [...
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 1 1 1 0 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ];
B1= [...
1 1 1
1 0 1
1 1 1];
B2= 1−B1;
subplot(2,3,[1 4])
showBlue(A, 'Original');
subplot(2,3,2)
showRed(B1, 'Structuring element B 1');
subplot(2,3,5)
showRed(B2, 'Structuring element B 2');
subplot(2,3,[3 6])
C=bwhitmiss(A,B1,B2)
showCombined(A,C, 'HMT');
...

6



The source code of the program that created Fig. 5

clear all; close all; clc;
fig=figure;
G= [...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0 0 1 1 1 1 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 1 1 1 0 0 0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ];

F=zeros(size(G,1),size(G,2));
B= [...

0 1 0
1 1 1
0 1 0];

subplot(2,3,1)
showBW(G, 'Mask');
subplot(2,3,4)
showBW(B, 'Structuring element B');
subplot(2,3,2)
F1=F;F1(2,2)=1;
showBW(F1, 'Marker 1');
subplot(2,3,5)
F2=F;F2(8,2)=1;
showBW(F2, 'Marker 2');
subplot(2,3,3)
R1=imreconstruct(F1,G,B);
showBW(R1, 'Reconstruction 1');
subplot(2,3,6)
R2=imreconstruct(F2,G,B);
showBW(R2, 'Reconstruction 2');
fig.PaperUnits = 'inches';
fig.PaperPosition = [0 0 15 5];
print(fig,"morphBinRecon1.png",'−dpng');
function showBW(myImg, myTitle)

imshow(myImg,'InitialMagnification',"fit");
title(myTitle)
pixelgrid

end

The source code of the program that created Fig. 6

clear all; close all; clc;
fig=figure;
G= [...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 0 0 1 1 0 0 0 0 1 1 0 1 0
0 1 0 0 1 1 0 0 0 0 1 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 1 0 0 1 0
0 1 0 0 1 0 1 0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ];

F=zeros(size(G,1),size(G,2));
B= [...

0 1 0
1 1 1
0 1 0];

subplot(2,3,1)

7



showBW(G, 'Original image');
subplot(2,3,2)
showBW(B, 'Structuring element B');
subplot(2,3,3)
F(3,3)=1;
showBW(F, 'Marker');
subplot(2,3,4)
showBW(1−G, 'Mask = OriginalˆC');
subplot(2,3,5)
R=imreconstruct(F,1−G,B);
showBW(R, 'Reconstruction');
subplot(2,3,6)
showBW(G+R, 'Filled = Original+reconstruction');

fig.PaperUnits = 'inches';
fig.PaperPosition = [0 0 15 5];
print(fig,"morphBinRecon2.png",'−dpng');
function showBW(myImg, myTitle)

imshow(myImg,'InitialMagnification',"fit");
title(myTitle)
pixelgrid

end

The source code of the program that created Fig. 7

clear all; close all; clc;
fig=figure;
A= [...

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1 1 1 1 1 0
0 1 0 0 1 1 0 0 0 0 1 1 0 1 0
0 1 0 0 1 1 0 0 0 0 1 1 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 1 1 1 0 1 0 0 1 0
0 1 0 0 1 0 1 0 1 0 1 0 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 1 0 0 0 0 1 0 1 0 0 0 0 1 0
0 1 1 1 1 1 1 0 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ];

subplot(1,3,1)
showBW(1−A, 'Original image');
subplot(1,3,2)
showBW(bwmorph(1−A,'skel',Inf),"bwmorp+skeleton");
subplot(1,3,3)
showBW(bwmorph(1−A,'thin',Inf),"bwmorp+thin");

fig.PaperUnits = 'inches';
fig.PaperPosition = [0 0 15 5];
print(fig,"morphBinSkel.png",'−dpng');
function showBW(myImg, myTitle)

imshow(myImg,'InitialMagnification',"fit");
title(myTitle)
pixelgrid

end

8


